Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	Lone pair(s) (of electrons on the nitrogen) ALLOW Non-bonded pair(s)	Spare pair	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \end{aligned}$ ALLOW \rightarrow for \rightleftharpoons IGNORE state symbols even if incorrect Right hand ions must be shown separately ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$	Reject near misses	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i i)}$	two of: Butyl / alkyl groups are electron donating / are electron pushing / are electron releasing Two (alkyl) groups in dibutylamine (but only one in butylamine) Lone pair (of electrons) on the nitrogen more readily available / higher electron density on the nitrogen or NH_{2} or amine group / N more delta negative / N or NH2 accepts a proton (2) more readily Stand alone marks Accept reverse argument for butylamine IGNORE 'electronegativity of nitrogen increasing'	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	mark For the idea of the lone pair being withdrawn towards the ring Lone pair pulled into the ring Lone pair (of electrons) on the nitrogen overlap Lone pair interacts with π electrons / lone pair interacts with delocalized electrons of the (benzene) ring Lone pair (of electrons) on the nitrogen donated to the (benzene) ring NOTE The reference to the lone pair may be found in a later part of the answer and credited Second mark EITHER For the idea of the lone pair being less available OR The nitrogen (atom) must be specified as below e. Lone pair is less readily available Nitrogen (atom) has lower electron density N (atom) or lone pair is less able to accept protons / H^{+} ALLOW		2

Question Number	Acceptable Answers	Mark
1(b)	$\mathrm{I}\left(\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}\right) \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+}$ ALLOW I $\left(\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}\right) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+}+4 \mathrm{H}_{2} \mathrm{O}$ II $\left(\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+4 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}\right) \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}\right)_{4}{ }^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ ALLOW II $\left(\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}+4 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}\right) \rightarrow \mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}\right)_{4}{ }^{2+}+6 \mathrm{H}_{2} \mathrm{O}$ Each correct equation scores 2 marks: 1 mark for the formula of the copper complex ion and 1 mark for the rest of the equation being correct Ligands can be in either order IGNORE state symbols even if incorrect IGNORE (lack of) square brackets around complex ions	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c)}$	Reaction is a nucleophilic substitution (1) It is unusual because benzene normally reacts with electrophiles / by electrophilic substitution OR Positive charge withdraws electrons from the ring (making it susceptible to nucleophilic attack) OR Expect nucleophiles to be repelled by the electron density of the ring	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
2(a)	$\begin{array}{cl} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+2 \mathrm{HCl} \rightarrow & \mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}+2 \mathrm{Cl}^{-} \\ & \text {(1) } \\ & \text { organic product } \end{array}$ Positive charges can be on nitrogens Balancing with $\mathbf{H C l}$ and $\mathbf{C l}^{-}$ Chloride ions can be at ends of product ie $\mathrm{ClH}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$ for right hand side, with or without charges, but if given charges must balance $\begin{equation*} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+2 \mathrm{H}^{+} \rightarrow \quad \mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+} \tag{2} \end{equation*}$ Reaction with 1 mol HCl for 1 max If molecular formulae used 1 max IGNORE state symbols even if wrong	Covalent bond to $\mathrm{Cl},(-\mathrm{Cl})$	2
Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 2 \\ & (b)(i) \end{aligned}$	Blue or green or blue-green or lavender ALLOW qualification of blue or green e.g. dark blue, but not with another colour e.g. blue purple	Any other colour e.g. Purple Violet	1
Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	The entropy change of the system is positive Because there is an increase in the number of particles/entities/moles/molecules OR The number of particles/entities/moles goes from four to seven OR Complex with three molecules goes to a complex with six molecules Second mark depends on a positive entropy change	Additional incorrect numbers molecules/ atoms from four to seven	2

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii)	They will rotate the plane of plane- polarised light (equally in opposite directions) Allow They will rotate the plane of polarised light (equally in opposite directions) OR They will rotate plane- polarised light (equally in opposite directions)	Optically active Reflect/ bend/ refract	$\mathbf{1}$

Question Number	Acceptable Answers		Reject	Mark
2(c)(i)	 Amide linkage correct Further detail correct, including trailing bonds IGNORE brackets ALLOW multiple units Second mark dependent on correct amide link ALLOW fully correct structural formulae for 1 $\left(\mathrm{OCCH}_{2} \mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}+\right.$ Can start with NH group			2
Question Number	Acceptable Answers Condensation Hydrogen chloride/ $\mathrm{HCl} /$ water $/ \mathrm{H}_{2} \mathrm{O}$ or another small molecule/is produced/lost/formed/removed (as well as the polymer) Mark independently	Reject		Mark
2(c)(ii)		Additio	n/elimination	2

Question Number	Acceptable Answers	Reject	Mark
* 2(c) (iii	Types of force		5
	Hydrogen bonds		
	and (permanent) dipole(-permanent dipole) forces	$\begin{aligned} & \text { Just } \\ & \text { p.d.- p.d } \end{aligned}$	
	and London/van der Waals'/dispersion forces		
	OR		
	Explanation e.g temporary/induced dipoles	Just v d W	
	All three needed for $1^{\text {st }}$ mark (which is given even if the forces are later explained incorrectly)		
	Hydrogen bonds		
	(Between) the hydrogen atoms on the nitrogen atoms and ...		
	OR		
	(Between) N-H and ...		
	... (the lone pair of electrons on) oxygen/ nitrogen atoms		
	These marks can be shown by a diagram		
	Permanent dipole-permanent dipole forces		
	Because the $\mathrm{C}=\mathrm{O} /$ carbon-oxygen bond/the $\mathrm{C}-\mathrm{N}$ bond is polar/a dipole		
	OR		
	N and/or O are electronegative atoms		
	This mark can be shown by a diagram providing the polarity of the bond is shown		
	London forces	Large	
	Polymer has large number of/many electrons OR	molecular mass alone	
	Explanation e.g temporary/induced/fluctuating dipoles (1)		

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	Formula showing $-\mathrm{NH}_{3}^{+}$and $-\mathrm{COO}^{-}$ $/-\mathrm{CO}_{2}^{-}$	$\mathbf{1}$	
Charges can be anywhere on			
functional group			
Rest of the molecule must be correct			
ALLOW displayed/part displayed formula			

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	Any two from High energy needed (to overcome) strong ionic/electrostatic forces OR strong forces between oppositely charged ions/between positive and negative between different (zwitter)ions OR between $-\mathrm{NH}_{3}{ }^{+}$and $-\mathrm{COO}^{-}$ OR between one molecule and another OR Chains of zwitterions/molecules (1)	any reference to intermolecular forces eg (strongly) polar/bond polarity if they state the ionic bond is within the same molecule	2

Question Number	Acceptable Answers	Reject	Mark
3(a)(iii)	 Correct peptide link Minimum two residues and extension to the rest of the molecule ALLOW $\begin{equation*} -\mathrm{NHCH}_{2} \mathrm{CONHCH}_{2} \mathrm{CO}- \tag{2} \end{equation*}$ Drawn the other way round, i.e. starting with the carbonyl group Brackets around outside with ' n ' ie (.....) $)_{n}$ Second mark depends on first		2

Question Number	Acceptable Answer	Reject	Mark
$\begin{aligned} & \text { *3(b) } \\ & \text { QWC } \end{aligned}$	Key Points KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram KP2 Marker spots of known aminoacids/measure R_{f} KP3 Run in (suitable) solvent/discussion of comparative solubilities in phases KP4 (Spray with) ninhydrin (and heat) [Stand alone mark] KP 5 Marker spots and the unknown spots correspond ALLOW Compare R_{f} values of marker spots with hydrolysate spots OR If 2-d chromatography used (2 different solvents run in two directions at right angles): KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram KP2 Run in (suitable) solvent in one direction KP3 Develop in suitable/different solvent at right angles OR discussion of comparative solubilities in phases KP4 Spray with ninhydrin (andheat) KP5 Compare hydrolysate spots with same experiment for known amino acids OR	Spot one amino acid/protein Water alone as solvent Spot one amino acid	5

